

Study Material

Downloaded from Vedantu

Vedantu is India's largest **LIVE online teaching platform** with best teachers from across the country.

Vedantu offers Live Interactive Classes for **JEE, NEET,** KVPY, NTSE, Olympiads, **CBSE, ICSE,** IGCSE, IB & State Boards for Students Studying in **6-12th Grades** and Droppers.

Awesome Master Teachers

Anand Prakash B.Tech, IIT Roorkee Co-Founder, Vedantu

Pulkit Jain B.Tech, IIT Roorkee Co-Founder, Vedantu

Vamsi Krishna B.Tech, IIT Bombay Co-Founder, Vedantu

My mentor is approachable and **guides me** in my future aspirations as well.

Student - Ayushi

My son loves the sessions and I can already see the change.

Parent - Sreelatha

10,04,600+ Hours of LIVE Learning

9,49,900+ Happy Students

95% Top Results **95**% Students of Regular Tuitions on Vedantu scored above **90**% in exams!

Vedantu

FREE MASTER CLASS SERIES

- Ø For Grades 6-12th targeting JEE, CBSE, ICSE & much more
- Learn from the Master Teachers India's best

Register for FREE

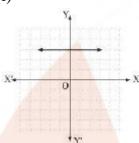
Limited Seats!

EXERCISE NO: 2.1

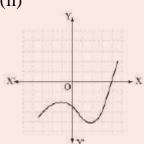
Question 1:

The graphs of y = p(x) are given in following figure, for some Polynomials p(x). Find the number of zeroes of p(x), in each case.

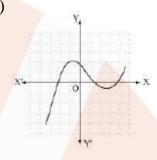
(i)



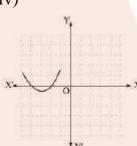
(ii)



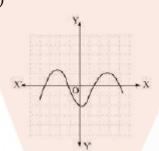
(iii)



(iv)



(v)



(vi)



Solution 1:

- (i) The number of zeroes is 0 as the graph does not cut the x-axis at any point.
- (ii) The number of zeroes is 1 as the graph intersects the *x*-axis at only 1 point.
- (iii) The number of zeroes is 3 as the graph intersects the *x*-axis at 3 points.
- (iv) The number of zeroes is 2 as the graph intersects the *x*-axis at 2 points.
- (v) The number of zeroes is 4 as the graph intersects the x-axis at 4 points.
- (vi) The number of zeroes is 3 as the graph intersects the *x*-axis at 3 points.

EXERCISE NO: 2.2

Ouestion 1:

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients. (ii) $4s^2 - 4s + 1$ (iii) $6x^2 - 3 - 12$ (v) $t^2 - 15$ (vi) $3x^2 - x - 4$

(i)
$$x^2 - 2x - 8$$

(ii)
$$4s^2 - 4s + 1$$

(iii)
$$6x^2 - 3 - 7x$$

(iv)
$$4u^2 + 8u$$

(v)
$$t^2 - 15$$

(vi)
$$3x^2 - x - 4$$

Solution 1:

(i)
$$x^2 - 2x - 8 = (x-4)(x+2)$$

The value of $x^2 - 2x - 8$ is zero when x - 4 = 0 or x + 2 = 0, i.e., when x = 4 or x = -2

Therefore, the zeroes of $x^2 - 2x - 8$ are 4 and -2.

Sum of zeroes =
$$4 - 2 = 2 = \frac{(-2)}{1} = \frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$$

Product of zeroes =
$$4x(-2) = -8 = \frac{(-8)}{1} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$$

(ii)
$$4s^2 - 4s + 1 = (2s - 1)^2$$

The value of $4s^2 - 4s + 1$ is zero when 2s - 1 = 0, i.e., $s = \frac{1}{2}$

Therefore, the zeroes of $4s^2 - 4s + 1$ are $\frac{1}{2}$ and $\frac{1}{2}$.

Sum of zeroes =
$$\frac{1}{2} + \frac{1}{2} = 1 \frac{(-4)}{4} = \frac{-(\text{Coefficient of s})}{\text{Coefficient of s}^2}$$

Product of zeroes
$$\frac{1}{2} \times \frac{1}{2} = \frac{1}{4} = \frac{\text{Constant term}}{\text{Coefficient of s}^2}$$

(iii)
$$6x^2 - 3 - 7x = 6x^2 - 7x - 3 = (3x + 1)(2x - 3)$$

The value of $6x^2 - 3 - 7x$ is zero when 3x + 1 = 0 or 2x - 3 = 0, i.e.,

$$x = \frac{-1}{3}$$
 or $x = \frac{3}{2}$

Therefore, the zeroes of
$$6x^2 - 3 - 7x$$
 are $\frac{-1}{3}$ and $\frac{3}{2}$

Sum of zeroes
$$=$$
 $\frac{-1}{3} + \frac{3}{2} = \frac{7}{6} = \frac{-(-7)}{6} = \frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$

Product of zeroes =
$$\frac{-1}{3} \times \frac{3}{2} = \frac{-1}{2} = \frac{-3}{6} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$$

(iv)
$$4u^2 + 8u = 4u^2 + 8u + 0$$

= $4u(u+2)$

The value of $4u^2 + 8u$ is zero when 4u = 0 or u + 2 = 0, i.e., u = 0 or u = -2

Therefore, the zeroes of $4u^2 + 8u$ are 0 and -2.

Sum of zeroes =
$$0 + (-2) = -2 = \frac{(-8)}{4} = \frac{-(\text{Coefficient of u})}{\text{Coefficient of u}^2}$$

Product of zeroes =
$$0 \times (-2) = 0 = \frac{0}{4} = \frac{\text{Constant term}}{\text{Coefficient of u}^2}$$

(v)

$$t^2 - 15$$

 $= t^2 = 0t - 15$
 $= (t - \sqrt{15})(t + \sqrt{15})$

The value of
$$t^2 - 15$$
 is zero when $t - \sqrt{15} = 0$ or $t + \sqrt{15} = 0$, i.e., when $t = \sqrt{15}$ or $t = -\sqrt{15}$

Therefore, the zeroes of $t^2 - 15$ are and $\sqrt{15}$ and $-\sqrt{15}$.

Sum of zeroes =
$$\sqrt{15} + (-\sqrt{15}) = 0 = \frac{-0}{1} = \frac{-(\text{Coefficient of t})}{\text{Coefficient of t}^2}$$

Product of zeroes =
$$(\sqrt{15})(-\sqrt{15}) = -15 = \frac{-15}{1} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$$

(vi)
$$3x^2 - x - 4$$

The value of $3x^2 - x - 4$ is zero when 3x - 4 = 0 or x + 1 = 0, i.e.,

when
$$x = \frac{4}{3}$$
 or $x = -1$

Therefore, the zeroes of $3x^2 - x - 4$ are $\frac{4}{3}$ and -1.

Sum of zeroes =
$$\frac{4}{3} + (-1) = \frac{1}{3} = \frac{-(-1)}{3} = \frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$$

Product of zeroes
$$=\frac{4}{3} + (-1) = \frac{-4}{3} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$$

Question 2:

Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

(i)
$$\frac{1}{4}$$
, -1

(i)
$$\frac{1}{4}$$
, -1 (ii) $\sqrt{2}$, $\frac{1}{3}$

$$(v) -\frac{1}{4}, \frac{1}{4}$$

Solution 2:

(i)
$$\frac{1}{4}$$
,-1

Let the polynomial be $ax^2 + bx + c$, and its zeroes be α and β .

$$\alpha + \beta = \frac{1}{4} = \frac{-b}{a}$$

$$\alpha\beta = -1 = \frac{-4}{4} = \frac{c}{a}$$

If a = 4, then b = -1, c = -4

Therefore, the quadratic polynomial is $4x^2 - x - 4$.

(ii)
$$\sqrt{2}, \frac{1}{3}$$

Let the polynomial be $ax^2 + bx + c$, and its zeroes be α and β .

$$\alpha + \beta = \sqrt{2} = \frac{3\sqrt{2}}{3} = \frac{-b}{a}$$

$$\alpha\beta = \frac{1}{3} = \frac{c}{a}$$

If
$$a = 3$$
, then $b = -3\sqrt{2}$, $c = 1$

Therefore, the quadratic polynomial is $3x^2 - 3\sqrt{2}x + 1$.

(iii) 0,
$$\sqrt{5}$$

Let the polynomial be $ax^2 + bx + c$, and its zeroes be α and β .

$$\alpha + \beta = 0 = \frac{0}{1} = \frac{-b}{a}$$

$$\alpha \times \beta = \sqrt{5} = \frac{\sqrt{5}}{1} = \frac{c}{a}$$

If
$$a = 1$$
, then $b = 0$, $c = \sqrt{5}$

Therefore, the quadratic polynomial is $x^2 + \sqrt{5}$.

(iv) 1, 1

Let the polynomial be $ax^2 + bx + c$, and its zeroes be α and β .

$$\alpha + \beta = 1 = \frac{1}{1} = \frac{-b}{a}$$

$$\alpha \times \beta = 1 = \frac{1}{1} = \frac{c}{a}$$

If
$$a = 1$$
, then $b = -1$, $c = 1$

Therefore, the quadratic polynomial is $x^2 - x + 1$.

$$(v) -\frac{1}{4}, \frac{1}{4}$$

Let the polynomial be $ax^2 + bx + c$, and its zeroes be α and β .

$$\alpha + \beta = \frac{-1}{4} = \frac{-b}{a}$$

$$\alpha \times \beta = \frac{1}{4} = \frac{c}{a}$$

If
$$a = 4$$
, then $b = 1$, $c = 1$

Therefore, the quadratic polynomial is $4x^2 + x + 1$.

(vi) 4, 1

Let the polynomial be $ax^2 + bx + c$.

$$\alpha + \beta = 4 = \frac{4}{1} = \frac{-b}{a}$$

$$\alpha \times \beta = 1 = \frac{1}{1} = \frac{c}{a}$$

If
$$a = 1$$
, then $b = -4$, $c = 1$

Therefore, the quadratic polynomial is $x^2 - 4x + 1$.

EXERCISE NO: 2.3

Question 1:

Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following:

(i)
$$p(x) = x^3 - 3x^2 + 5x - 3$$
, $g(x) = x^2 - 2$

(ii)
$$p(x) = x^4 - 3x^2 + 4x + 5$$
, $g(x) = x^2 + 1 - x$

(iii)
$$p(x) = x^4 - 5x + 6$$
, $g(x) = 2 - x^2$

Solution 1:

$$p(x) = x^3 - 3x^2 + 5x - 3$$

$$g(x) = x^2 - 2$$

$$x^{2} - 2 \sqrt{x^{3} - 3x^{2} + 5x - 3}$$

$$x^3 - 2x$$

$$-3x^2 + 7x - 3$$

$$-3x^{2} + 6$$

$$7x - 9$$

Quotient =
$$x - 3$$

Remainder =
$$7x - 9$$

(ii)
$$p(x) = x^4 - 3x^2 + 4x + 5 = x^4 + 0.x^3 - 3x^2 + 4x + 5$$

$$g(x)=x^2+1-x=x^2-x+1$$

Quotient = $x^2 + x - 3$ Remainder = 8

(iii)

$$p(x) = x^{4} - 5x + 6 = x^{4} + 0.x^{2} - 5x + 6$$

$$q(x) = 2 - x^{2} = -x^{2} + 2$$

$$-x^{2} + 2)x^{4} + 0.x^{2} - 5x + 6$$

$$x^{4} - 2x^{2}$$

$$- +$$

$$2x^{2} - 5x + 6$$

$$2x^{2} - 4$$

$$- +$$

$$-5x + 10$$

Quotient = $-x^2 - 2$ Remainder = -5x + 10

Question 2:

Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:

(i)
$$t^2 - 3.2t^4 + 3t^3 - 2t^2 - 9t - 12$$

(ii)
$$x^2 + 3x + 1, 3x^4 + 5x^3 - 7x^2 + 2x + 2$$

(iii)
$$x^2 - 3x + 1$$
, $x^5 - 4x^3 + x^2 + 3x + 1$

Solution 2:

(i)
$$t^2 - 3.2t^4 + 3t^3 - 2t^2 - 9t - 12$$

 $t^2 - 3 = t^2 + 0.t - 3$

$$2t^{3} + 4t^{2} - 9t - 12$$
$$3t^{3} + 0.t^{2} - 9t$$
$$- - +$$

$$4t^{2} + 0.t - 12$$
$$4t^{2} + 0.t - 12$$
$$0$$

Since the remainder is 0,

Hence, $t^2 - 3$ is a factor of $2t^4 + 3t^3 - 2t^2 - 9t - 12$

(ii)
$$x^2 + 3x + 1$$
, $3x^4 + 5x^3 - 7x^2 + 2x + 2$

$$3x^{2} + 4x + 2$$

$$x^{2} + 3x + 1$$

$$3x^{4} + 5x^{3} - 7x^{2} + 2x + 2$$

$$-3x^{4} + 9x^{3} + 3x^{2}$$

$$-4x^{3} - 10x^{2} + 2x + 2$$

$$-4x^{3} + 12x^{2} + 4x$$

$$2x^{2} + 6x + 2$$

$$-2x^{2} + 6x + 2$$

$$x \times x \times x$$

Since the remainder is 0,

Hence, $x^2 + 3x + 1$ is a factor of $3x^4 + 5x^3 - 7x^2 + 2x + 2$

(iii)
$$x^{2} - 3x + 1, x^{5} - 4x^{3} + x^{2} + 3x + 1$$

$$x^{2} - 1$$

$$x^{5} - 4x^{3} + x^{2} + 3x + 1$$

$$x^{5} - 3x^{3} + x^{2}$$

$$-x^{3} + 3x + 1$$

$$-x^{3} + 3x - 1$$

$$+$$

$$2$$

Since the remainder $\neq 0$,

$$x^2 - 3x + 1, x^5 - 4x^3 + x^2 + 3x + 1$$

Question 3:

Obtain all other zeroes of $3x^4 + 6x^3 - 2x^2 - 10x - 5$, if two of its zeroes are

$$\sqrt{\frac{5}{3}}$$
 and $-\sqrt{\frac{5}{3}}$

Solution 3:

$$p(x)=3x^4+6x^3-2x^2-10x-5$$

Since the two zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$

$$\therefore \left(x - \sqrt{\frac{5}{3}}\right) \left(x + \sqrt{\frac{5}{3}}\right) = \left(x^2 - \sqrt{\frac{5}{3}}\right) \text{ is a factor of } 3x^4 + 6x^3 - 2x^2 - 10x - 5$$

Therefore, we divide the given polynomial by $x^2 - \frac{5}{3}$

$$x^{2} + 0.x - \frac{5}{3} \overline{\smash)3x^{4} + 6x^{3} - 2x^{2} - 10x - 5}$$

$$3x^{4} + 0.x^{3} - 5x^{2}$$

$$- - +$$

$$6x^3 + 3x^2 - 10x - 5$$

$$6x^3 + 0x^2 - 10x$$

$$3x^2 + 0x - 5$$

$$3x^2 + 0x - 5$$

0

$$3x^{4} + 6x^{3} - 2x^{2} - 10x - 5 = \left(x^{2} - \frac{5}{3}\right)\left(3x^{2} + 6x + 3\right)$$
$$= 3\left(x^{2} - \frac{5}{3}\right)\left(x^{2} + 2x + 1\right)$$

We factorize $x^2 + 2x + 1$

$$=(x+1)^2$$

Therefore, its zero is given by x + 1 = 0

$$x = -1$$

As it has the term $(x+1)^2$, therefore, there will be 2 zeroes at x=-1.

Hence, the zeroes of the given polynomial are $\sqrt{\frac{5}{3}}$, $-\sqrt{\frac{5}{3}}$, -1 and -1.

Question 4:

On dividing $x^3 - 3x^2 + x + 2$ by a polynomial g(x), the quotient and remainder were x - 2 and -2x + 4, respectively. Find g(x).

Solution 4:

$$p(x) = x^3 - 3x^2 + x + 2$$
 (Dividend)

$$g(x) = ? (Divisor)$$

Quotient =
$$(x - 2)$$

Remainder =
$$(-2x + 4)$$

$$Dividend = Divisor \times Quotient + Remainder$$

$$x^3 - 3x^2 + x + 2 = g(x)x(x-2) + (-2x+4)$$

$$x^3 - 3x^2 + x + 2 + 2x - 4 = g(x)(x - 2)$$

$$x^3 - 3x^2 + 3x - 2 = g(x)(x-2)$$

g(x) is the quotient when we divide $(x^3 - 3x^2 + 3x - 2)$ by (x - 2)

$$\begin{array}{r} x^2 - x + 1 \\ x - 2 \overline{\smash)x^3 - 3x^2 + 3x - 2} \\ x^3 - 2x^2 \\ - & + \\ \hline - x^2 + 3x - 2 \\ - x^2 + 2x \\ + & - \end{array}$$

$$\begin{array}{c}
 x - 2 \\
 x - 2 \\
 - +
 \end{array}$$

0

$$\therefore g(x) = (x^2 - x + 1)$$

Question 5:

Give examples of polynomial p(x), g(x), q(x) and r(x), which satisfy the division algorithm and

- (i) $\deg p(x) = \deg q(x)$
- (ii) $\deg q(x) = \deg r(x)$

Solution 5:

According to the division algorithm, if p(x) and g(x) are two polynomials with

 $g(x) \neq 0$, then we can find polynomials q(x) and r(x) such that $p(x) = g(x) \times q(x) + r(x)$,

where r(x) = 0 or degree of r(x) < degree of g(x)

Degree of a polynomial is the highest power of the variable in the polynomial.

(i) $\deg p(x) = \deg q(x)$

Degree of quotient will be equal to degree of dividend when divisor is constant (i.e., when any polynomial is divided by a constant).

13

Let us assume the division of $6x^2 + 2x + 2by 2$.

Here,
$$p(x) = 6x^2 + 2x + 2$$

$$g(x) = 2$$

$$q(x) = 3x^2 + x + 1$$
 and $r(x) = 0$

Degree of p(x) and q(x) is the same i.e., 2.

Checking for division algorithm,

$$p(x) = g(x) \times q(x) + r(x)$$

$$6x^2 + 2x + 2 = 2(3x^2 + x + 1)$$

$$=6x^2 + 2x + 2$$

Thus, the division algorithm is satisfied.

(ii)
$$\deg q(x) = \deg r(x)$$

Let us assume the division of $x^3 + x$ by x^2 ,

Here,
$$p(x) = x^3 + x$$

$$g(x) = x^2$$

$$q(x) = x$$
 and $r(x) = x$

Clearly, the degree of q(x) and r(x) is the same i.e., 1.

Checking for division algorithm,

$$p(x) = g(x) \times q(x) + r(x)$$

$$x^3 + x = (x^2) \times x + x$$

$$x^3 + x = x^3 + x$$

Thus, the division algorithm is satisfied.

(iii)deg
$$r(x) = 0$$

Degree of remainder will be 0 when remainder comes to a constant.

Let us assume the division of $x^3 + 1$ by x^2 .

Here,
$$p(x) = x^3 + 1$$

$$g(x) = x^2$$

$$q(x) = x$$
 and $r(x) = 1$

Clearly, the degree of r(x) is 0.

Checking for division algorithm,

$$p(x) = g(x) \times q(x) + r(x)$$

$$x^3 + 1 = (x^2) \times x + 1$$

$$x^3 + 1 = x^3 + 1$$

Thus, the division algorithm is satisfied.

EXERCISE NO: 2.4

Question 1:

Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:

(i)
$$2x^3 + x^2 - 5x + 2$$
; $\frac{1}{2}$, 1, 2 $2x^3 + x^2 - 5x + 2$; $\frac{1}{2}$, 1, -2

(ii)
$$x^3 - 4x^2 + 5x - 2$$
; 2,1,1

Solution 1:

$$(i)p(x) = 2x^3 + x^2 - 5x + 2$$

Zeroes for this polynomial are $\frac{1}{2}$,1,-2

$$p\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^2 - 5\left(\frac{1}{2}\right) + 2$$
$$= \frac{1}{4} + \frac{1}{4} - \frac{5}{2} + 2$$
$$= 0$$

$$p(1) = 2 \times 1^3 + 1^2 - 5 \times 1 + 2$$

$$=0$$

$$p(-2) = 2(-2)^{3} + (-2)^{2} - 5(-2) + 2$$

= -16 + 4 + 10 + 2 = 0

Therefore, $\frac{1}{2}$, 1, and -2 are the zeroes of the given polynomial.

Comparing the given polynomial with $ax^3 + bx^2 + cx + d$, we obtain a = 2, b = 1, c = -5, d = 2

We can take
$$\alpha = \frac{1}{2}$$
, $\beta = 1$, $y = -2$

$$\alpha + \beta + \gamma = \frac{1}{2} + 1 + (-2) = -\frac{1}{2} = \frac{-b}{a}$$

$$\alpha\beta + \beta\gamma + \alpha\gamma = \frac{1}{2} \times 1 + 1(-2) + \frac{1}{2}(-2) = \frac{-5}{2} = \frac{c}{a}$$

$$\alpha\beta\gamma = \frac{1}{2} \times 1 \times (-2) = \frac{-1}{1} = \frac{-(2)}{2} = \frac{-d}{a}$$

Therefore, the relationship between the zeroes and the coefficients is verified.

(ii)
$$p(x) = x^3 - 4x^2 + 5x - 2$$

Zeroes for this polynomial are 2, 1, 1

$$p(2) = 2^3 - 4(2^2) + 5(2) - 2$$

$$=8-16+10-2=0$$

$$p(1) = 1^3 - 4(1^2) + 5(1) - 2$$

$$=1-4+5-2=0$$

Therefore, 2, 1, 1 are the zeroes of the given polynomial.

Comparing the given polynomial with $ax^3 + bx^2 + cx + d$, we obtain a = 1, b = -4, c = 5, d = -2.

Verification of the relationship between zeroes and coefficient of the given polynomial

Sum of zeroes =
$$2+1+1=4=\frac{-(-4)}{1}=\frac{-b}{a}$$

Multiplication of zeroes taking two at a time = (2)(1) + (1)(1) + (2)(1)

$$=2+1+2=5=\frac{(5)}{1}=\frac{c}{a}$$

Multiplication of zeroes =
$$2 \times 1 \times 1 = 2 = \frac{-(-2)}{1} = \frac{-d}{a}$$

Hence, the relationship between the zeroes and the coefficients is verified.

Ouestion 2:

Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, -7, -14 respectively.

Solution 2:

Let the polynomial be $ax^3 + bx^2 + cx + d$ and the zeroes be α , β , and γ . It is given that

$$\alpha + \beta + \gamma = \frac{2}{1} = \frac{-b}{a}$$

$$\alpha\beta + \beta\gamma + \alpha\gamma = \frac{-7}{1} = \frac{c}{a}$$

$$\alpha\beta\gamma = \frac{-14}{1} = \frac{-d}{a}$$

If
$$a = 1$$
, then $b = -2$, $c = -7$, $d = 14$

Hence, the polynomial is $x^3 - 2x^2 - 7x + 14$.

Question 3:

If the zeroes of polynomial $x^3 - 3x^2 + x + 1$ are a - b, a + b, find a and b.

Solution 3:

$$p(x) = x^3 - 3x^2 + x + 1$$

Zeroes are a - b, a + a + b

Comparing the given polynomial with $px^3 + qx^2 + rx + t$, we obtain

$$p = 1$$
, $q = -3$, $r = 1$, $t = 1$

Sum of zeroes = a - b + a + a + b

$$\frac{-q}{p} = 3a$$

$$\frac{-(-3)}{1} = 3a$$

$$3 = 3a$$

$$a = 1$$

The zeroes are 1 - b, 1 + b.

Multiplication of zeroes = 1(1 - b)(1 + b)

$$\frac{-t}{p} = 1 - b^2$$

$$\frac{-1}{1} = 1 - b^2$$

$$1 - b^2 = -1$$

$$1+1=b^2$$

$$b = \pm \sqrt{2}$$

Hence, a = 1 and $b = \sqrt{2}$ or $-\sqrt{2}$.

Question 4:

It two zeroes of the polynomial $x^4 - 6x^3 - 26x^2 + 138x - 35$ are $2 \pm \sqrt{3}$, find other zeroes.

Solution 4:

Given that $2 + \sqrt{3}$ and $2 - \sqrt{3}$ are zeroes of the given polynomial.

Therefore,
$$(x-2-\sqrt{3})(x-2+\sqrt{3})=x^2+4-4x-3$$

 $= x^2 - 4x + 1$ is a factor of the given polynomial

For finding the remaining zeroes of the given polynomial, we will find the quotient by dividing $x^4 - 6x^3 - 26x^2 + 138x - 35$ by $x^2 - 4x + 1$.

$$x^{2} - 2x - 35$$

$$x^{2} - 4x + 1)x^{4} - 6x^{3} - 26x^{2} + 138x - 35$$

$$x^{4} - 4x^{3} + x^{2}$$

$$- + -$$

$$- 2x^{3} - 27x^{2} + 138x - 35$$

$$- 2x^{3} + 8x^{2} - 2x$$

$$+ - +$$

$$- 35x^{2} + 140x - 35$$

$$- 35x^{2} + 140x - 35$$

$$+ - +$$

$$0$$

Clearly,
$$= x^4 - 6x^3 - 26x^2 + 138x - 35 = (x^2 - 4x + 1)(x^2 - 2x - 35)$$

It can be observed that $(x^2 - 2x - 35)$ is also a factor of the given polynomial.

And =
$$(x^2 - 2x - 35) = (x - 7)(x + 5)$$

Therefore, the value of the polynomial is also zero when or x - 7 = 0

$$Or x + 5 = 0$$

Or
$$x = 7$$
 or -5

Hence, 7 and -5 are also zeroes of this polynomial.

Question 5:

If the polynomial $x^4 - 6x^3 + 16x^2 - 25x - 10$ is divided by another Polynomial $x^2 - 2x + k$, the remainder comes out to be x + a, find k and a.

Solution 5:

By division algorithm,

 $Dividend = Divisor \times Quotient + Remainder$

Dividend – Remainder = Divisor × Quotient

$$x^4 - 6x^3 + 16x^2 - 25x - 10 - x - a = x^4 - 6x^3 + 16x^2 - 26x + 10 - a$$
 will be perfectly divisible by $x^2 - 2x + k$.

Let us divide by $x^4 - 6x^3 + 16x^2 - 26x - 10 - a$ by $x^2 - 2x + k$

$$x^{2} - 4x + (8 - k)$$

$$x^{2} - 2x + k x^{2} - 26x + 10 - a$$

$$x^{4} - 2x^{3} + kx^{2}$$

$$- + -$$

$$- 4x^{3} + (16 - k)x^{2} - 26x$$

$$- 4x^{3} + 8x^{2} - 4kx$$

$$+ - +$$

$$(8 - k)x^{2} - (26 - 4k)x + 10 - a$$

$$(8 - k)x^{2} - (16 - 2k)x + (8k - k^{2})$$

$$- + -$$

$$(-10 + 2k)x + (10 - a - 8k + k^{2})$$

$$(x^{2} - 4x + 1)(x^{2} - 2x - 35) = (x - 7)(x + 5)$$

It can be observed that $(-10+2k)x + (10-a-8k+k^2)$ will be 0.

Therefore,
$$(-10+2k) = 0$$
 and $(10-a-8k+k^2) = 0$

For
$$(-10+2k)=0$$
,

$$2 k = 10$$

And thus,
$$k = 5$$

For $(10 - a - 8k + k^2) = 0$
 $10 - a - 8 \times 5 + 25 = 0$
 $10 - a - 40 + 25 = 0$
 $-5 - a = 0$

Therefore,
$$a = -5$$

Hence,
$$k = 5$$
 and $a = -5$

Vedantu

Study Materials

- JEE Main & Advanced Free Study Material
- NEET UG Free Study Material
- NCERT Solutions for Class 1 to 12
- NCERT Books PDF for Class 1 to 12
- ICSE & ISC Free Study Material
- Free Study Material for Kids Learning (Grade 1 to 5)
- Olympiad Free Study Material
- Reference Books (RS Aggarwal, RD Sharma, HC Verma, Lakhmir Singh, Exemplar and More)
- Previous Year Question Paper CBSE & State Boards
- Sample Papers
- Access All Free Study Material Here

Thank You for downloading the PDF

FREE LIVE ONLINE

MASTER CLASSES

FREE Webinars by Expert Teachers

Vedantu

FREE MASTER CLASS SERIES

- Learn from the Master Teachers India's best

Register for **FREE**

Limited Seats!